Evaluate the definite integrals. ∫101√1−x2dx.
∫101√1−x2dx=[sin−1x]10(∵∫dx√1−x2=sin−1x)=sin−11−sin−10=π2−0=π2
Evaluate the definite integrals. ∫1011+x2dx.
Evaluate the definite integrals. ∫101√1+x−√xdx.