Evaluate the definite integrals. ∫101√1+x−√xdx.
∫101√1+x−√xdx.=∫10(√1+x+√x)(√1+x−√x)(√1+x+√x)dx=∫10(√1+x+√x)1+x−xdx=∫10[(1+x)12+x12]dx=[(1+x)12+112+1+x12+112+1]10=23[(1+x)32+x32]10=23[232+132−(132+0)]=23(2√2)=4√23
Evaluate the definite integrals. ∫101√1−x2dx.
Evaluate the definite integrals. ∫1011+x2dx.