wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the following: xsin1x(1x2)32dx

Open in App
Solution

I=xsin1x(1x2)32dx

Put x=sintt=sin1x

dx=costdt

=sint.sin1(sint)(1sin2t)32.costdt

=sint.t.cost(cos2t)32dt

=tsintcosdcos3tdt

=tsintcost.1costdt

=ttant.sectdt

=ttantsectdt1.sectdt

=tsectln|sect+tant|+C

=sin1xsec(sin1x)lnsec(sin1x)+tan(sin1x)+C

=sin1x.11x2ln11x2+x1x2+C

=sin1x.11x2ln1+x1x2+C

1068703_1181115_ans_9dbb3a7fc2d74563a9f8ae023274d2d1.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon