wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the following integrals:

0π2asinx+bsinxsinx+cosxdx

Open in App
Solution


Let I =0π2asinx+bcosxsinx+cosxdx .....(1)

Then,
I=0π2asinπ2-x+bcosπ2-xsinπ2-x+cosπ2-xdx 0afxdx=0afa-xdx
=0π2acosx+bsinxcosx+sinxdx .....(2)

Adding (1) and (2), we get

2I=0π2asinx+bcosxcosx+sinx+acosx+bsinxsinx+cosxdx2I=0π2asinx+bcosx+acosx+bsinxsinx+cosxdx2I=0π2a+bsinx+a+bcosxsinx+cosxdx2I=0π2a+bsinx+cosxsinx+cosxdx
2I=0π2a+bdx2I=a+b×x0π22I=a+b×π2-02I=π2a+bI=π4a+b

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon