Evaluate the following limits:
limx→a(x+2)52−(a+2)52x−a
limx→a(x+2)52−(a+2)52x−a
=limx→a(x+2)52−(a+2)52(x+2)−(a+2)
Let y =x+2 and b =a+2
When x⇒a,
Then x+2→a+2
⇒y→b
=limy→by52−b52y−b,
=52b52−1
[Using formula limx→axn−anx−a=nan−1]
=52(a+2)52−1
=52(a+2)32