Byju's Answer
Standard XII
Mathematics
Multiplication of Matrices
Evaluate the ...
Question
Evaluate the following limits:
lim
x
→
0
sin
α
+
β
x
+
sin
α
-
β
x
+
sin
2
α
x
cos
2
β
x
-
cos
2
α
x
Open in App
Solution
lim
x
→
0
sin
α
+
β
x
+
sin
α
-
β
x
+
sin
2
α
x
cos
2
β
x
-
cos
2
α
x
=
lim
x
→
0
2
sin
α
+
β
x
+
α
-
β
x
2
cos
α
+
β
x
-
α
-
β
x
2
+
2
sin
α
x
cos
α
x
1
-
sin
2
β
x
-
1
-
sin
2
α
x
=
lim
x
→
0
2
sin
α
x
cos
β
x
+
2
sin
α
x
cos
α
x
sin
2
α
x
-
sin
2
β
x
=
lim
x
→
0
2
sin
α
x
cos
β
x
+
cos
α
x
sin
2
α
x
-
sin
2
β
x
=
lim
x
→
0
2
α
x
×
sin
α
x
α
x
×
cos
β
x
+
cos
α
x
α
2
x
2
×
sin
2
α
x
α
2
x
2
-
β
2
x
2
×
sin
2
β
x
β
2
x
2
=
2
α
×
lim
x
→
0
sin
α
x
α
x
×
lim
x
→
0
cos
β
x
+
cos
α
x
α
2
×
lim
x
→
0
sin
α
x
α
x
2
-
β
2
×
lim
x
→
0
sin
β
x
β
x
2
×
lim
x
→
0
x
x
2
=
2
α
×
1
×
1
+
1
α
2
×
1
-
β
2
×
1
×
lim
x
→
0
1
x
=
4
α
α
2
-
β
2
×
∞
=
∞
Disclaimer
: There is some mistake or some misprinting in the question.
Suggest Corrections
0
Similar questions
Q.
Evaluate:
lim
x
→
0
{
sin
(
α
+
β
)
x
+
sin
(
α
−
β
)
x
+
sin
2
α
x
}
cos
2
β
x
−
cos
2
α
x
Q.
lim
x
→
0
{
sin
(
α
+
β
)
x
+
sin
(
α
−
β
)
x
+
sin
2
α
x
}
cos
2
β
x
−
cos
2
α
x
.
Q.
If
α
,
β
,
γ
are the angles of a triangle and the system of equations
cos
(
α
−
β
)
x
+
cos
(
β
−
γ
)
y
+
cos
(
γ
−
α
)
z
=
0
cos
(
α
+
β
)
x
+
cos
(
β
+
γ
)
y
+
cos
(
γ
+
α
)
z
=
0
sin
(
α
+
β
)
x
+
sin
(
β
+
γ
)
y
+
sin
(
γ
+
α
)
z
=
0
has non-trivial solutions, then triangle is necessarily
Q.
Evaluate the following limits:
lim
x
→
0
2
sin
x
-
sin
2
x
x
3
Q.
Evaluate the following limits:
lim
x
→
π
1
+
c
o
s
x
t
a
n
2
x
View More
Related Videos
Multiplication of Matrices
MATHEMATICS
Watch in App
Explore more
Multiplication of Matrices
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app