∫π/40sinθ+cosθ9+16sin2θdθ
Let sinθ−cosθ=t
∴(cosθ+sinθ)dθ=dt
=∫0−1dt9+16(1–t2)(∵t2=1–2⋅sinθ⋅cosθ)
=∫0−1dt25–16t2
=116∫0−1dt(54)2–t2
=116×12×54⎡⎢ ⎢ ⎢⎣ln∣∣ ∣ ∣ ∣∣54+t54–t∣∣ ∣ ∣ ∣∣⎤⎥ ⎥ ⎥⎦0−1
(∵∫1a2–x2dx=12aln∣∣∣a+xa–x∣∣∣+c)
=140⎡⎢ ⎢ ⎢⎣ln|1|−ln∣∣ ∣ ∣ ∣∣1494∣∣ ∣ ∣ ∣∣⎤⎥ ⎥ ⎥⎦
=140ln9=ln320
∴∫π/40sinθ+cosθ9+16sin2θdθ=ln320.