Evaluate the integral∫e31dxx√1+lnx
∫e31dxx√1+lnx=∫e31dlnx√1+lnx
∫e31dlnx√1+lnx=2√1+lnx|e31
=2√1+3−2√1
=2√4−2=2(1)
=2
So, ∫e31dxx√1+lnx=2
Find the integral of the given function w.r.t - x
y=x−1x+1x2