We have,
limx→0√2−√1+cosxsin2x
It becomes 0/0 form.
On rationalising the numerator, we get
=limx→0√2−√1+cosxsin2x×√2+√1+cosx√2+√1+cosx
=limx→0(√2)2−(√1+cosx)2sin2x(√2+√1+cosx)
[∵(a+b)(a−b)=a2−b2]
=limx→02−1−cosxsin2x(√2+√1+cosx)
[∵1+cosx=2cos2x2]
=limx→01−cosxsin2x(√2+√2cos2x2)
=limx→02sin2x2√2sin2x(1+cosx2)
[∵1−cosx=2sin2x2]
=limx→02sin2x2x24×x24√2sin2xx2×x2(1+cosx2)
=12√2(1+1)
=14√2