Given:
limx→0{ex+e−x−2x2}1/x2
=limx→0⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩⎛⎝ex2⎞⎠2+⎛⎝e−x2⎞⎠2−2ex2e−x2x2⎫⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎬⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎭1/x2
=limx→0⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩⎛⎝ex2−e−x2⎞⎠2x2⎫⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎬⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎭1/x2
=limx→0⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩⎛⎜
⎜⎝ex−1ex2⋅x⎞⎟
⎟⎠2⎫⎪
⎪
⎪⎬⎪
⎪
⎪⎭1/x2
=limx→0{1ex×(ex−1x)2}1/x2
={1e0×(1)2)}1/0=1∞
[∵limx→0ax−1x=1]
limx→0{ex+e−x−2x2}1/x2 is of the form of 1∞
Using the result below:
If limx→af(x)=1 and limx→ag(x)=∞ such that limx→a{f(x)−1}g(x) exists, then
limx→a{f(x)}g(x)=elimx→a{f(x)−1}g(x)
Here,
f(x)=ex+e−x−2x2
g(x)=1x2
=elimx→0(ex+e−x−2x2)×(1x2)
∵ex=1+x1!+x22!+x33!+⋅⋅⋅
e−x=1−x1!+x22!−x33!+⋅⋅⋅
ex+e−x=2+2x22!+2x44!+⋅⋅⋅
=elimx→0⎛⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝(2+2x22!+2x44!+⋅⋅⋅)−2x2−1⎞⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠×⎛⎝1x2⎞⎠
=elimx→0⎛⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝x2+2x44!+⋅⋅⋅−x2x2⎞⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠×⎛⎝1x2⎞⎠
=elimx→0⎛⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝2x44!+2x66!+⋅⋅⋅x4⎞⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠
=elimx→0⎛⎜⎝24!+2x26!+⋅⋅⋅⎞⎟⎠
=e24!=e112
Therefore,
limx→0{ex+e−x−2x2}1/x2=e112