wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the limit:
limx0{ex+ex2x2}1/x2

Open in App
Solution

Given:
limx0{ex+ex2x2}1/x2

=limx0⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ex22+ex222ex2ex2x2⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪1/x2

=limx0⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ex2ex22x2⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪1/x2

=limx0⎪ ⎪ ⎪⎪ ⎪ ⎪⎜ ⎜ex1ex2x⎟ ⎟2⎪ ⎪ ⎪⎪ ⎪ ⎪1/x2

=limx0{1ex×(ex1x)2}1/x2

={1e0×(1)2)}1/0=1

[limx0ax1x=1]

limx0{ex+ex2x2}1/x2 is of the form of 1

Using the result below:

If limxaf(x)=1 and limxag(x)= such that limxa{f(x)1}g(x) exists, then

limxa{f(x)}g(x)=elimxa{f(x)1}g(x)

Here,

f(x)=ex+ex2x2

g(x)=1x2

=elimx0(ex+ex2x2)×(1x2)

ex=1+x1!+x22!+x33!+

ex=1x1!+x22!x33!+

ex+ex=2+2x22!+2x44!+

=elimx0⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜(2+2x22!+2x44!+)2x21⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟×1x2

=elimx0⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜x2+2x44!+x2x2⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟×1x2

=elimx0⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜2x44!+2x66!+x4⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟

=elimx024!+2x26!+

=e24!=e112

Therefore,
limx0{ex+ex2x2}1/x2=e112

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon