Evaluate the limit:
limx→∞(3x−1)(4x−2)(x+8)(x−1)
We have,
limx→∞(3x−1)(4x−2)(x+8)(x−1)
Dividing numerator and denominator by x2, we get
=limx→∞(3x−1)x(4x−2)x(x−8)x(x−1)x
=limx→∞(3−1x)(4−2x)(1+8x)(1−1x)
=limx→∞(3−1x)limx→∞(4−2x)limx→∞(1+8x)limx→∞(1−1x)
When x→∞, then 1x→0
=(3−0)(4−2(0))(1+8(0))(1−0)=12