wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the limit:
limxπ5+cosx2(πx)2

Open in App
Solution

We have,

limxπ5+cosx2(πx)2

Put x=π+h,h0

=limh05+cos(π+h)2(π(π+h))2

=limh05cosh2(h)2 [cos(π+θ)=cosθ]

On rationalising the numerator, we get

=limh0[5cosh2h2×5cosh+25cosh+2]

=limh0[(5cosh)222h2(5cosh+2)]

[(a+b)(ab)=a2b2]

=limh05cosh4h2(5cosh+2)

=limh01coshh2(5cosh+2)

=limh02sin2h2h2(5cosh+2)

[1cos2θ=2sin2θ]

=limh02sin2h24×(h2)2(5cosh+2)

=limh012×⎜ ⎜ ⎜sinh2h2⎟ ⎟ ⎟2×1(5cosh+2)

[limx0sinxx=1]

=12×(1)2×1(51+2)

=1(4+2)(2)

=1(2+2)(2)

=18

Therefore,

limxπ5+cosx2(πx)2=18

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon