We have,
limx→π√5+cosx−2(π−x)2
Put x=π+h,h→0
=limh→0√5+cos(π+h)−2(π−(π+h))2
=limh→0√5−cosh−2(−h)2 [∵cos(π+θ)=−cosθ]
On rationalising the numerator, we get
=limh→0[√5−cosh−2h2×√5−cosh+2√5−cosh+2]
=limh→0[(√5−cosh)2−22h2(√5−cosh+2)]
[∵(a+b)(a−b)=a2−b2]
=limh→05−cosh−4h2(√5−cosh+2)
=limh→01−coshh2(√5−cosh+2)
=limh→02sin2h2h2(√5−cosh+2)
[∵1−cos2θ=2sin2θ]
=limh→02sin2h24×(h2)2(√5−cosh+2)
=limh→012×⎛⎜
⎜
⎜⎝sinh2h2⎞⎟
⎟
⎟⎠2×1(√5−cosh+2)
[∵limx→0sinxx=1]
=12×(1)2×1(√5−1+2)
=1(√4+2)(2)
=1(2+2)(2)
=18
Therefore,
limx→π√5+cosx−2(π−x)2=18