Evaluate limx→0(1−cos x√cos2x)x2
limx→0(1−cos x√cos2x)x2
=limx→0{(1−cos x√cos2x)x2×(1+cos x √cos 2x)(1+cos x√cos 2x)}
=limx→0(1−cos x cos2x)x2×1(1+cos x√cos 2x)
=limx→0(1−cos x cos2x)x2×=limx→01(1+cos x√cos 2x)
=limx→0{1−cos2 x(1−2sin2 x cos2 x)x2}×1(1+11√1)
=limx→0(1−cos 2 x+2 sin 2 x cos2 x)x2×12
=12×limx→0(1−cos 2 x+2 sin 2 x cos2 x)x2×12×limx→0sn2 x(1+2 cos2 x)x2
=12×limx→0(sin xx)2×limx→0(1+2cos2 x)
=12×12×(1+2×12)=32