Evaluate limx→0(√1+3x−√1−3x)x
limx→0(√1+3x−√1−3x)x
=limx→0(√1+3x−√1−3x)x×(√1+3x+√1−3x)(√1+3x+√1−3x) [on rationalising the numerator]
=limx→0(1+3x)−(1−3x)x(√1+3x+√1−3x) [∵(a+b)(a−b)=a2−b2]
=limx→06xx(√1+3x+√1−3x)
=limx→06(√1+3x+√1−3x)
=6(√1+3×0+√1−3×0)
=6(√1+√1)=62=3