wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: y=(sinx)tanx+(cosx)secx

Open in App
Solution

y=(sinx)tanx+(cosx)secx
Let y1=(sinx)tanxlogy1=tanxlogsinxdy1dx=(sinx)tanx(logsinx(sec2x)+1)
y2=(cosx)secxlogy2=secxlogcosxdy2dx=(cosx)secx(secxtanxlogcosxtanxsecx)
dydx=dy1dx+dy2dx=(sinx)tanx(1+sec2xlogsinx)+(cosx)secxsecxtanx(logcosx1)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Logarithmic Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon