Question

# Examine the consistency of the system of equations$$3x-y-2z=2, 2y-z=-1, 3x-5y=3$$

Solution

## Given system of equations$$3x-y-2z=2$$$$2y-z=-1$$$$3x-5y=3$$This can be written as $$AX=B$$where $$A=\begin{bmatrix} 3 & -1 &-2 \\ 0 & 2 & -1\\ 3 &-5 & 0 \end{bmatrix}, X=\begin{bmatrix} x \\ y\\z \end{bmatrix}, B=\begin{bmatrix} 2 \\ -1\\ 3\end{bmatrix}$$Here, $$|A|=3(0-5)+1(0+3)-2(0-6)$$$$\Rightarrow |A|=0$$Since, $$|A|= 0$$Hence, the system of equations has either infinitely many solutions (consistent) or no solution (inconsistent).We need to find $$(adj A)B$$$$C_{11}=(-1)^{1+1} \begin{vmatrix} 2 & -1 \\ -5 & 0 \end{vmatrix}$$$$\Rightarrow C_{11}=0-5 =-5$$$$C_{12}=(-1)^{1+2} \begin{vmatrix} 0 & -1 \\ 3 & 0 \end{vmatrix}$$$$\Rightarrow C_{12}=-(0+3) =-3$$$$C_{13}=(-1)^{1+3} \begin{vmatrix} 0 & 2 \\ 3 & -5 \end{vmatrix}$$$$\Rightarrow C_{13}=0-6 =-6$$$$C_{21}=(-1)^{2+1} \begin{vmatrix} -1 & -2 \\ -5 & 0 \end{vmatrix}$$$$\Rightarrow C_{21}=-(0-10) =10$$$$C_{22}=(-1)^{2+2} \begin{vmatrix} 3 & -2 \\ 3 & 0 \end{vmatrix}$$$$\Rightarrow C_{22}=0+6 =6$$$$C_{23}=(-1)^{2+3} \begin{vmatrix} 3 & -1 \\ 3 & -5 \end{vmatrix}$$$$\Rightarrow C_{23}=-(-15+3) =12$$$$C_{31}=(-1)^{3+1} \begin{vmatrix} -1 & -2 \\ 2 & -1 \end{vmatrix}$$$$\Rightarrow C_{31}=1+4 =5$$$$C_{32}=(-1)^{3+2} \begin{vmatrix} 3 & -2 \\ 0 & -1 \end{vmatrix}$$$$\Rightarrow C_{32}=-(-3-0) =3$$$$C_{33}=(-1)^{3+3} \begin{vmatrix} 3 & -1 \\ 0 & 2 \end{vmatrix}$$$$\Rightarrow C_{33}=6-0=6$$Hence, the co-factor matrix is $$C=\begin{bmatrix} -5 & -3 & -6 \\ 10 & 6 & 12 \\ 5 & 3 & 6 \end{bmatrix}$$$$\Rightarrow adj A= C^{T}=\begin{bmatrix} -5 & 10 & 5 \\ -3 & 6 & 3 \\ -6 & 12 & 6 \end{bmatrix}$$Now, $$(adj A)B=\begin{bmatrix} -5 & 10 & 5 \\ -3 & 6 & 3 \\ -6 & 12 & 6 \end{bmatrix}\begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$$$=\begin{bmatrix} -10-10+15 \\ -6-6+9 \\ -12-12+18 \end{bmatrix}$$$$\Rightarrow (adj A)B=\begin{bmatrix} -5 \\ -3 \\ -6 \end{bmatrix}$$Since, $$(adj A)B \ne O$$Hence, the system of equations is inconsistent.MathematicsNCERTStandard XII

Suggest Corrections
Â
0

Similar questions
View More

Same exercise questions
View More

People also searched for
View More