Expand the following, using suitable identities: (14a−12b+1)2
=116a2+14b2+1−14ab−b+12a
=18a2+12b2+1−18ab−b+14a
=116a2+14b2+1−14ab−b+116a
=12a2+18b2+1−18ab−b+116a
(14a−12b+1)2
(a+b+c)2=a2+b2+c2+2(ab+bc+ca)
a=14a,b=−12b,c=1
=(14a)2+(−12b)2+(1)2+2(14a)(−12b)+2(−12b)(1)+2(1)(14a)