1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard VIII
Mathematics
Algebraic Identities
Expand: x-1...
Question
Expand:
(
x
−
1
)
(
x
+
1
)
(
x
2
+
1
)
(
x
4
+
1
)
Open in App
Solution
Consider
(
x
−
1
)
(
x
+
1
)
(
x
2
+
1
)
(
x
4
+
1
)
Now,
(
x
−
1
)
(
x
+
1
)
=
x
2
−
1
2
.............
∵
(
a
+
b
)
(
a
−
b
)
=
(
a
2
−
b
2
)
⟹
(
x
−
1
)
(
x
+
1
)
(
x
2
+
1
)
(
x
4
+
1
)
=
(
x
2
−
1
)
(
x
2
+
1
)
(
x
4
+
1
)
Taking
a
=
x
2
,
b
=
1
in
(
a
+
b
)
(
a
−
b
)
=
(
a
2
−
b
2
)
⟹
(
x
−
1
)
(
x
+
1
)
(
x
2
+
1
)
(
x
4
+
1
)
=
(
(
x
2
)
2
−
(
1
)
2
)
(
x
4
+
1
)
=
(
x
4
−
1
)
(
x
4
+
1
)
We have,
(
x
4
−
1
)
(
x
4
+
1
)
=
(
x
4
)
2
−
(
1
)
2
....... [Again by the formula]
⟹
(
x
−
1
)
(
x
+
1
)
(
x
2
+
1
)
(
x
4
+
1
)
=
(
x
8
−
1
)
Hence, the answer is
x
8
−
1
Suggest Corrections
1
Similar questions
Q.
(
x
−
1
)
(
x
+
1
)
(
x
2
+
1
)
(
x
4
+
1
)
Q.
Find the continued product:
(
x
−
1
)
(
x
+
1
)
(
x
2
+
1
)
(
x
4
+
1
)
Q.
d
d
x
[
(
x
+
1
)
(
x
2
+
1
)
(
x
4
+
1
)
(
x
8
+
1
)
]
=
(
15
x
p
−
16
x
q
+
1
)
(
x
−
1
)
−
2
⇒
(
p
,
q
)
=
Q.
If
x
4
+
1
x
4
=
194
,
find
x
3
+
1
x
3
,
x
2
+
1
x
2
and
x
+
1
x