Express the following algebraic fractions in the reduced from:
a2−ab+b2a2+ab÷a3+b3a2−b2
a2−ab+b2a2+ab÷a3+b3a2−b2=a2−ab+b2a2+ab×a2−b2a3+b3
=(a2−ab+b2)(a2−b2)(a2+ab)(a3+b3)=(a2−ab+b2)(a+b)(a−b)((a)(a+b))((a+b)(a2−ab+b2))
Cancelling same terms from numerator and denominator, we get
=(a−b)a(a+b)
Therefore, a2−ab+b2a2+ab÷a3+b3a2−b2=(a−b)a(a+b)