wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

f(x)=(3sinx1)2xlog(1+x),x02log3,x=0
Check continuity at x=0

Open in App
Solution

f(x)=(3sinx1)2xlog(1+x),x02log3,x=0
Checking continuity at x=0
limx0+f(x)=limh0[3sin(0+h)]2(0+h)log(1+0+h)=limh02(3sinh1)(3cosh)1log(1+h)+h1+h
=limh02(3sinh1)(3cosh)11+h+11+h+h(11+h)2
=91
limx0f(x)=limh0(3sin(0h)1)2(0h)log(1h)=limh02(3sinh1)(3cosh)1log(1h)11+h
=limh06(3cosh)11h+11h0
=92
f(0)=2log(3)3
From 1,2&3,f(x)
For making it continuous, f(0)=e2log3=9

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Continuity of a Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon