The correct option is C 35
We have, f(x)=⎧⎪
⎪⎨⎪
⎪⎩sin3(√3)⋅log(1+3x)(tan−1√x)2(e5√x−1)x,x≠0a,x=0
For continuity in [0,1],f(0)=f(0+), otherwise it is discontinuous.
Therefore, limx→0+sin3(√x)⋅log(1+3x)x⋅(tan−1√x)2⋅(e5√x−1)
=limx→0+[35⋅sin3√x(√x)3⋅(√x)2(tan−1√x)2×log(1+3x)3x⋅5√xe5√x−1]
=35limx→0+sin3√x(√x)3⋅(√x)2tan−1√x×log(1+3x)3x⋅5√xe5√x−1=a
⇒a=35.