f(x) = {x|x|,if x <0−1, if x≥0
Here, f(x) = {x|x|,if x <0−1, if x≥0
LHL= limx→0− f(x) = limx→0− x|x|
Putting x=0-h as x→0−.when x→0
limh→0 0−h|0−h| = limh→0 −h|h|=−1 ∴|−h|=h
RHL = limh→0+ f(x)=-1
Also, f(0)=-1 LHL=RHL=f(0)
Thus, f(x) is continuous at x=0 There is no point of discontinuity for this functions f(x).