f(x)={|x|x, if x≠00, if x=0
Here, f(x)={|x|x, if x≠00, if x=0
LHL = limx→0− f(x) =limx→0− |×|x
Putting x=0-h as x→0− when x→0−
∴ limh→0 |0−h|o−h limh→0 h−h=−1 [∴|-h1=h]
RHL = limx→0+ f(×) =limx→0+ |×|x
Putting x=0 +h x→0+ ; h→0
limh→0 |0−h|o+h limh→0 hh=1
∴ LHL / = RHL. Thus, f(×) is discontinuous at x=0.