The correct option is B x=π3
f(x)=sinx(1+cosx)
Therefore
f(x)=sinx+sinx.cosx.
Now for a maximum
f′(x)=0
Or
⇒cosx−sin2x+cos2x=0
⇒cosx−(1−cos2x)+cos2x=0
⇒2cos2x+cosx−1=0
⇒2cos2x+2cosx−cosx−1=0
⇒2cosx(1+cosx)−(1+cosx)=0
⇒(1+cosx)(2cosx−1)=0
cosx=−1 or cosx=12.
Hence
x=π or x=π3,5π3.
Now
f(π)=0 ....(not a maximum).
f(π3)=√32(32)
=3√34 ...(ii)
And
f(5π3)=−3√34
Hence
f(x) attains a maximum at x=π3.