f(x)=
⎷2x+1x2−3x+2x=√2x+1x(x−2)(x−1)
[f(x)]2=2x+1x(x−2)(x−1)=Ax+B(x−2)+C(x−1)
simplifying 2x+1=A(x−2)(x−1)+B(x−1)x+C(x−2)x
2x+1=At x2(A+B+C)+x(−3A−C−2C)+A(2A+0+0)
comparing coefficient
2A=1⇒ A=1/2A+B+C=0⇒ B+C=−1/2
2=−.A−B−2C ⇒ 2=−32−B−2C ⇒ B+2C=−32−2=−72
∴ B+C=−1/2 , B+2C=−7/2
solving ⇒C=−3 , B=5/2 , A=1/2
∴ [f(x)]2=12x+52(x−2)+3(x−1)
differentiating w.r.t ′x′
2f(x),f′(x)=−12x2+−52(x−2)2+3(x−1)2
f′(x)=12√2x+1x(x−2)(x−1)=⎡⎢
⎢
⎢
⎢⎣12x2−52(x−2)2+3(x−1)2⎤⎥
⎥
⎥
⎥⎦