The correct option is B x=1e
Given : f(x)=xx
Let y=xx
⇒logy=xlogx
Differentiating both sides w.r.t x , we get
⇒1y.dydx=x.1x+logx
⇒dydx=xx[1+logx]
Now,
dydx=0
⇒xx(1+logx)=0
⇒logx=−1
⇒x=e−1=1e
f(x)=xx has a stationary point at x=1e
Hence, option B is correct.