Factorise : a4−(a2−3b2)2
We have, a4−(a2−3b2)2
=(a2)2−(a2−3b2)2
=[a2+(a2−3b2)][a2−(a2−3b2)] [Using the identity(x2−y2)=(x−y)(x+y)]
=(a2+a2−3b2)(a2−a2+3b2)
=(2a2−3b2)(3b2)
=3b2(2a2−3b2)
=3b2[(√2a)2−(√3b)2] [Using above identity]
=3b2(√2a−√3b)(√2a+√3b)