Factorise each of the following:
(i) 27y3+125z3
(ii) 64m3−343n3
(i) 27y3+125z3
=(3y)3+(5z)3
We have an identity: a3+b3=(a+b)(a2−ab+b2) (1)
In this problem, we have a=3y and b=5z, putting these values in (1), we get
(3y)3+(5z)3=(3y+5z)[(3y)2−(3y)(5z)+(5z)2)=(3y+5z)(9y2−15yz+25z2)
(ii) 64m3−343n3
=(4m)3−(7n)3
We have an identity: a3−b3=(a−b)(a2+ab+b2) (1)
In this problem, we have a=4m and b=7n, putting these values in (1), we get
(4m)3−(7n)3=(4m−7n)[(4m)2+(4m)(7n)+(7n)2)=(4m−7n)(16m2+28mn+49n2)