Factorize the expression: 1−25(a+b)2
The correct option is B (1−5a−5b)(1+5a+5b)
The given expression is1−25(a+b)2, which can be written as,
=12−[5(a+b)]2
Using the identity x2−y2=(x+y)(x−y)
=(1−[5(a+b)])(1+[5(a+b)])
=(1−5a−5b)(1+5a+5b)
25x2−4 can be factorised as:
25a2−4 can be factorized as: