Factorise the following expressions
(i) p2 + 6p + 8
(ii) q2 − 10q + 21
(iii) p2 + 6p − 16
(i) p2 + 6p + 8
It can be observed that, 8 = 4 × 2 and 4 + 2 = 6
∴ p2 + 6p + 8 = p2 + 2p + 4p + 8
= p(p + 2) + 4(p + 2)
= (p + 2) (p + 4)
(ii) q2 − 10q + 21
It can be observed that, 21 = (−7) × (−3) and (−7) + (−3) = − 10
∴ q2 − 10q + 21 = q2 − 7q − 3q + 21
= q(q − 7) − 3(q − 7)
= (q − 7) (q − 3)
(iii) p2 + 6p − 16
It can be observed that, 16 = (−2) × 8 and 8 + (−2) = 6
p2 + 6p − 16 = p2 + 8p − 2p − 16
= p(p + 8) − 2(p + 8)
= (p + 8) (p − 2)