Factorize the following expression:
(2a+3b)2+2(2a+3b)(2a-3b)+(2a-3b)2
Factorizing the given expression:
(2a+3b)2+2(2a+3b)(2a-3b)+(2a-3b)2=(2a+3b+2a-3b)2(Using(a+b)2=a2+2ab+b2)=(4a)2=16a2
Hence, after factorization, we get (2a+3b)2+2(2a+3b)(2a-3b)+(2a-3b)2=16a2.
Factorise:
a2−(2a+3b)2
Simplify the following : (i)(5a−8b)2−(5a+8b)2 (ii)(2a+3b)2−((2a+3b)(2a−3b)) [4 MARKS]
What is the LCM of (2a+3b)2 and (4a2–9b2)