Given: a4−16(b−c)4
∴a4−16(b−c)4
=(a2)2−[4(b−c)2]2
Using the formula, (x2−y2)=(x−y)(x+y)
=[a2+4(b−c)2[a2−4(b−c)2]
=[a2+4(b−c)2[a2−[2(b−c)]2]
=[a2+4(b−c)2][a+2(b−c)][a−2(b−c)]
=[a2+4(b−c)2](a+2b−2c)(a−2b+2c)
Hence, a4−16(b−c)4=[a2+4(b−c)2](a+2b−2c)(a−2b+2c).