Factors of a2−b2−4ac+4c2 are
(a−2c+b) and (a+2c−b)
True
False
a2−b2−4ac+4c2
a2−4ac+4c2−b2
a2−2ac−2ac+4c2−b2
a(a−2c)−2c(a−2c)−b2
(a−2c)2−b2
(a−2c+b)(a−2c−b)
If a, b, c are in G.P., prove that:
(i) a(b2+c2)=c(a2+b2)
(ii) a2b2c2(1a3+1b3+1c3)=a3+b3+c3
(iii) (a+b+c)2a2+b2+c2=a+b+ca−b+c
(iv) 1a2−b2+1b2=1b2−c2
(v) (a+2b+2c)(a−2b+2c)=a2+4c2.