Let the zeroes of the cubic polynomial be
α=−3,β=−2 and γ=2
Then, α+β+γ=−3+(−2)+2
=−3−2+2
=−3
αβ+βγ+γα=(−3)(−2)+(−2)(2)+(2)(−3)
=6−4−6
=−4
and αβγ=(−3)×(−2)×2
=6×2
=12
Now , required cubic polynomial
=x3−(α+β+γ)x2+(αβ+βγ+γα)x−αβγ
=x3−(−3)x2+(−4)x−12
=x3+3x2−4x−12
So, x3+3x2−4x−12 is the required cubic polynomial which satisfy the given conditions.