Given, →a=3^i+2^j+2^k
and →b=^i+2^j−2^k.
Now, →a+→b=(3^i+2^j+2^k)+(^i+2^j−2^k)=4^i+4^j+0^k
→a−→b=(3^i+2^j+2^k)−(^i+2^j−2^k)=2^i+0^j+4^k
We know that the unit vector perpendicular to both →a+→b ane →a−→b is given by
^n=(→a+→b)×(→a−→b)∣∣(→a+→b)×(→a−→b)∣∣
Here, (→a+→b)×(→a−→b)=∣∣
∣
∣∣^i^j^k440204∣∣
∣
∣∣
=^i(16−0)−^j(16−0)+^k(0−8)
=16^i−16^j−8^k
Now, ∣∣(→a+→b)×(→a−→b)∣∣=√(16)2+(16)2+(8)2
=√256+256+64=√576=24
Hence, the required unit vector ^n=(→a+→b)×(→a−→b)∣∣(→a+→b)×(→a−→b)∣∣
=16^i−16^j−8^k24=23^i−23^j−13^k