Find all complex numbers satisfying the equation 2|z|2+z2−5+i√3=0
A
±(√62+1√2i);±(1√6+32i)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
±(√62−1√2i);±(2√6−32i)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
±(√62−1√3i);±(1√6−32i)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
±(√62−1√2i);±(1√6−3√2i)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D±(√62−1√2i);±(1√6−3√2i) Letz=a+ibThus:2(a2+b2)+(a2−b2+2abi)−5+i√3=0=>3a2+b2−5=0and2ab+√3=0=>a=−√3bSubstitutinginthefirst:94b2+b2=5=>b2=92or12=>b=±3√2or±1√2=>a=∓1√6or∓√3√2=∓√62=>z=±(√62−i√2)or±(1√6−3i√2) Hence, (d) is correct.