Find all points of discontinuity of f(x) wheref(x) is defined by f(x)={2x+3, if x≤22x−3, if x>2
Here, f(x)={2x+3, if x≤22x−3, if x>2
LHL = limx→2− f(x)=limx→2−(2x+3)
Putting x=2-h as x→2− when h→0
limh→0[2(2-h)+3] = limh→0 (7-2h)=7−2× 0=7
Putting x=2+h as x→2+ when x→0
RHL = limx→2+ f(x)=limx→2+(2x−3)
limh→0 [2(2+h)−3]= limh→0 (1+2h)= 1+2×0=1
LHL≠RHL.
Thus, f(x) is discontinuous at x=2.