The correct option is
C (−3√3,−2√3)∪(2√3,3√3)We first solve the inequality x2+x+2x2+5x+6<0⇒x2+x+2(x+3)(x+2)<0.
Since x2+x+2=(x+12)2+74>0 for x∈R,
the inequility is satisfied if (x+3)(x+2)<0 when −3<x<−2⋯(1)
We now find the extrema of the function f(x)=1+a2x−x3.
For max, or Min.,f′(x)=a2−3x2
∴x=a√3.−a√3
f′′(x)=−6>0 as x<0 by (1)
Hence minimum, when a>0 we choose x=−a√3
∴−3<−a√3<−2 by (1)
Multiplying by -ive sing and reversing and hence no change is the sign of inequality.
Thus we get 2√3<a<3√3
Again if a<0 then we choose x=a√3
∴−3<a√3<−2 ⇒−3√3<a<−2√3.
Thus a∈(−3√3,−2√3)∪(2√3,3√3)