wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find dydx, if y=esin2x{2tan11+x1x}.

Open in App
Solution

y=esin2x{2tan11+x1x}
dydx=esin2x.sin2x.2tan11+x1x+esin2xddx(2tan11+x1x)
ddx(2tan11+x1x)
Put x=cos2θ
2tan11+x1x=2tan1(cotθ)=2[π2θ]
=π2×12cos1x
=πcos1x
dydx=esin2x.sin2x.2tan11+x1x+esin2x.11x2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon