wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find d2ydx2 If x=a(θsinθ),y=a(1+cosθ)

Open in App
Solution

x=a(θsinθ),y=a(1+cosθ)
dxdθ=ddθ[aθasinθ]=aacosθ
dydθ=ddθ[a+acosθ]=asinθ
dydx=dy/dθdx/dθ=asinθa(1cosθ)
d2ydx2=ddx(dy/dx)=ddx[dy/dθdx/dθ]
=ddx[asinθa(1cosθ)]
=sinθ×ddθ(1cosθ)dθdx(1cosθ)ddθ(sinθ)dθdx(1cosθ)2
=[sinθsinθdx/dθ×(1cosθ)cosθdx/dθ]1(1cosθ)2
=cosθ(cos2θ+sin2θ)a(1cosθ)(1cosθ)2
=cosθ1a(1cosθ)3
=1a(1cosθ)2
d2ydx2=1a(1cosθ)2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon