We have,
x=a(θ−sinθ) ……. (1)
y=a(1+cosθ) ……. (2)
On differentiating of equation (1) w.r.t θ, we get
dxdθ=a(1−cosθ) …….. (3)
On differentiating of equation (2) w.r.t θ, we get
dydθ=a(0−sinθ)
dydθ=−asinθ …….. (4)
On dividing equation (4) by equation (3), we get
dydθdxdθ=−asinθa(1−cosθ)
dydx=−sinθ(1−cosθ)
dydx=sinθ(cosθ−1)
Hence, this is the answer.