wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find dydx; if y=tan1(sinx1+cosx)

Open in App
Solution

y=tan1(sinx1+cosx)
tany=sinx1+cosx
sec2ydydx=(1+cosx)ddx(sinx)sinxddx(1+cosx)(1+cosx)2
sec2ydydx=(1+cosx)(cosx)sinx(sinx)(1+cosx)2
sec2ydydx=cosx+cos2x+sin2x(1+cosx)2
sec2ydydx=cosx+1(1+cosx)2
sec2ydydx=1(1+cosx)
(1+tan2y)dydx=1(1+cosx)
(1+(sinx1+cosx)2)dydx=1(1+cosx)
(1+sin2x(1+cosx)2)dydx=1(1+cosx)
(1+sin2x(1+cosx)2)dydx=1(1+cosx)
(1+cos2x+2cosx+sin2x1+cosx)dydx=1
(1+1+2cosx1+cosx)dydx=1
(2+2cosx1+cosx)dydx=1
(2(1+cosx)1+cosx)dydx=1
2dydx=1
dydx=12



flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon