wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find:
dydx=sin(x+y)+cos(x+y)

Open in App
Solution

dydx=sin(x+y)+cos(x+y)
Substitute x+y=v
1+dydx=dvdx
dydx=dvdx1
The given differential equation becomes
dydx=sin(x+y)+cos(x+y)
dvdx1=sinv+cosv
dvdx=sinv+cosv+1
dv1+sinv+cosv=dx
dv1+2tanv21+tan2v2+1tan2v21+tan2v2=dx
1+tan2v22(1+tanv2)dv=dx
sec2v22(1+tanv2)dv=dx
log2(1+tanv2)+c=x
Re-substituting x+y=v we get
x=log2(1+tanx+y2)+c where c is the constant of integration.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Implicit Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon