wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find dy/dx of : x=sin3tcos2t,y=cos3tcos2t

Open in App
Solution

Given,
x=sin3tcos2t,y=cos3tcos2t
Here,
dydx=dydx×dtdtdydx=dydt×dtdxdydx=dydtdxdt
Now,
dydt=ddt(cos3tcos2t)=d(cos3t)dtcos2td(cos2t)dtcos3t(cos2t)2=3cos2td(cost)dtcos2t12cos2td(cos2t)dtcos3t(cos2t)2=3cos2tsintcos2t×cos2t+sin2tcos3tcos2t(cos2t)2=3cos2tsint(cos2t)+sin2tcos3t(cos2t)2(cos2t)=cos2t(3sintcos2t+costsin2t)(cos2t)32
And
dxdt=ddt(sin3tcos2t)=d(sin3t)dtcos2td(cos2t)dtsin3t(cos2t)2=3sin2td(sint)dtcos2t12cos2td(cos2t)dtsin3t(cos2t)2=3sin2tcostcos2t12cos2t(sin2t)sin3t(cos2t)2=3sin2tcostcos2t+sin2tsin3t(cos2t)(cos2t)2=sin2t(3costcos2t+sintsin2t)(cos2t)32
So,
dydx=cos2t(3sintcos2t+costsin2t)(cos2t)32sin2t(3costcos2t+sintsin2t)(cos2t)32=cos2t(3sintcos2t+costsin2t)sin2t(3costcos2t+sintsin2t)=cot2t(3sintcos2t+costsin2t3costcos2t+sintsin2t)=cot2t(cos2t(3sint+costsin2tcos2t)cos2t(3cost+sintsin2tcos2t))=cot2t(3sint+costtan2t3cost+sinttan2t)=cot2t(cost(3sintcost+tan2t)cost(3+sintcosttan2t))=cot2t(tan2t3tant3+tanttan2t)=cot2t(2tant1tan2t3tant3+tant(2tant1tan2t))[tan2θ=2tanθ1tan2θ]=cot2t(2tant3tant+3tan3t33tan2t+2tan2t)=cot2t(tant3tant3tan2t)=(cot2ttant3cot2ttan3t3tan2t)=(1tan2ttant31tan2ttan3t3tan2t)=(13tant(tant)tant3tan2t)=(13tan2t3tanttan3t)=1(3tanttan3t13tan2t)=1tan3t[tan3θ=3tanθtan3θ13tan2θ]=cot3tdydx=cot3t.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon