1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Algebra of Derivatives
Find dy/dx ...
Question
Find
d
y
/
d
x
of :
x
=
sin
3
t
√
cos
2
t
,
y
=
cos
3
t
√
cos
2
t
Open in App
Solution
Given,
x
=
sin
3
t
√
cos
2
t
,
y
=
cos
3
t
√
cos
2
t
Here,
d
y
d
x
=
d
y
d
x
×
d
t
d
t
⇒
d
y
d
x
=
d
y
d
t
×
d
t
d
x
⇒
d
y
d
x
=
d
y
d
t
d
x
d
t
Now,
d
y
d
t
=
d
d
t
(
cos
3
t
√
cos
2
t
)
=
d
(
cos
3
t
)
d
t
⋅
√
cos
2
t
−
d
(
√
cos
2
t
)
d
t
⋅
cos
3
t
(
√
cos
2
t
)
2
=
3
cos
2
t
⋅
d
(
cos
t
)
d
t
⋅
√
cos
2
t
−
1
2
√
cos
2
t
⋅
d
(
cos
2
t
)
d
t
⋅
cos
3
t
(
√
cos
2
t
)
2
=
−
3
cos
2
t
⋅
sin
t
⋅
√
cos
2
t
×
√
cos
2
t
+
sin
2
t
⋅
cos
3
t
√
cos
2
t
(
√
cos
2
t
)
2
=
−
3
cos
2
t
⋅
sin
t
⋅
(
cos
2
t
)
+
sin
2
t
⋅
cos
3
t
(
√
cos
2
t
)
2
⋅
(
√
cos
2
t
)
=
cos
2
t
(
−
3
sin
t
⋅
cos
2
t
+
cos
t
⋅
sin
2
t
)
(
cos
2
t
)
3
2
And
d
x
d
t
=
d
d
t
(
sin
3
t
√
cos
2
t
)
=
d
(
sin
3
t
)
d
t
⋅
√
cos
2
t
−
d
(
√
cos
2
t
)
d
t
⋅
sin
3
t
(
√
cos
2
t
)
2
=
3
sin
2
t
⋅
d
(
sin
t
)
d
t
⋅
√
cos
2
t
−
1
2
√
cos
2
t
⋅
d
(
cos
2
t
)
d
t
⋅
sin
3
t
(
√
cos
2
t
)
2
=
3
sin
2
t
⋅
cos
t
⋅
√
cos
2
t
−
1
2
√
cos
2
t
⋅
(
−
sin
2
t
)
⋅
sin
3
t
(
√
cos
2
t
)
2
=
3
sin
2
t
⋅
cos
t
⋅
cos
2
t
+
sin
2
t
⋅
sin
3
t
(
√
cos
2
t
)
(
√
cos
2
t
)
2
=
sin
2
t
(
3
cos
t
⋅
cos
2
t
+
sin
t
⋅
sin
2
t
)
(
cos
2
t
)
3
2
So,
d
y
d
x
=
cos
2
t
(
−
3
sin
t
⋅
cos
2
t
+
cos
t
⋅
sin
2
t
)
(
cos
2
t
)
3
2
sin
2
t
(
3
cos
t
⋅
cos
2
t
+
sin
t
⋅
sin
2
t
)
(
cos
2
t
)
3
2
=
cos
2
t
(
−
3
sin
t
⋅
cos
2
t
+
cos
t
⋅
sin
2
t
)
sin
2
t
(
3
cos
t
⋅
cos
2
t
+
sin
t
⋅
sin
2
t
)
=
cot
2
t
(
−
3
sin
t
⋅
cos
2
t
+
cos
t
⋅
sin
2
t
3
cos
t
⋅
cos
2
t
+
sin
t
⋅
sin
2
t
)
=
cot
2
t
(
cos
2
t
(
−
3
sin
t
+
cos
t
⋅
sin
2
t
cos
2
t
)
cos
2
t
(
3
cos
t
+
sin
t
⋅
sin
2
t
cos
2
t
)
)
=
cot
2
t
(
−
3
sin
t
+
cos
t
⋅
tan
2
t
3
cos
t
+
sin
t
⋅
tan
2
t
)
=
cot
2
t
(
cos
t
(
−
3
sin
t
cos
t
+
tan
2
t
)
cos
t
(
3
+
sin
t
cos
t
⋅
tan
2
t
)
)
=
cot
2
t
(
tan
2
t
−
3
tan
t
3
+
tan
t
⋅
tan
2
t
)
=
cot
2
t
(
2
tan
t
1
−
tan
2
t
−
3
tan
t
3
+
tan
t
(
2
tan
t
1
−
tan
2
t
)
)
[
∵
tan
2
θ
=
2
tan
θ
1
−
tan
2
θ
]
=
cot
2
t
(
2
tan
t
−
3
tan
t
+
3
tan
3
t
3
−
3
tan
2
t
+
2
tan
2
t
)
=
−
cot
2
t
(
tan
t
−
3
tan
t
3
−
tan
2
t
)
=
−
(
cot
2
t
⋅
tan
t
−
3
cot
2
t
⋅
tan
3
t
3
−
tan
2
t
)
=
−
(
1
tan
2
t
⋅
tan
t
−
3
1
tan
2
t
⋅
tan
3
t
3
−
tan
2
t
)
=
−
(
1
−
3
tan
t
⋅
(
tan
t
)
tan
t
3
−
tan
2
t
)
=
−
(
1
−
3
tan
2
t
3
tan
t
−
tan
3
t
)
=
−
1
(
3
tan
t
−
tan
3
t
1
−
3
tan
2
t
)
=
−
1
tan
3
t
[
∵
tan
3
θ
=
3
tan
θ
−
tan
3
θ
1
−
3
tan
2
θ
]
=
−
cot
3
t
∴
d
y
d
x
=
−
cot
3
t
.
Suggest Corrections
0
Similar questions
Q.
x
=
sin
3
t
√
cos
2
t
,
y
=
cos
3
t
√
cos
2
t
then find
d
y
d
x
Q.
If
x
=
sin
3
t
√
cos
2
t
,
y
=
cos
3
t
√
cos
2
t
, then find
d
y
d
x
.
Q.
If
x
=
sin
3
t
√
(
cos
2
t
)
,
y
=
cos
3
t
√
(
cos
2
t
)
,
find
d
y
d
x
at
t
=
π
6
.
Q.
If
x
and
y
are connected parametrically by the equation given exercise without eliminating the parameter, Find
d
y
d
x
.
x
=
sin
3
t
√
cos
2
t
,
y
=
cos
3
t
√
cos
2
t
Q.
If
x
and
y
are connected parametrically by the given equation, then without eliminating the parameter, find
d
y
d
x
.
x
=
sin
3
t
√
cos
2
t
,
y
=
cos
3
t
√
cos
2
t
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Algebra of Derivatives
MATHEMATICS
Watch in App
Explore more
Algebra of Derivatives
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app