wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find dydx

y=e3x sin 4x·2x

Open in App
Solution

We have, y=e3x× sin4x × 2x ...i
Taking log on both sides,
logy=loge3x+logsin4x+log2x logy=3x loge+logsin4x+x log2 logy=3x+logsin4x+x log2
Differentiating with respect to x,
1ydydx=ddx3x+ddxlog sin4x+ddxx log21ydydx=3+1sin4xddxsin4x+log211ydydx=3+1sin4xcos4xddx4x+log21ydydx=3+cot4x4+log21ydydx=3+4cot4x+log2dydx=y3+4cot4x+log2dydx=e3xsin4x2x3+4cot4x+log2 Using equation i

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon