wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find dydx

y=eax·sec x·log x1-2x

Open in App
Solution

We have, y=eaxsecx logx1-2x ...iy=eaxsecx logx1-2x12
Taking log on both sides,
logy=logeax+logsecx+log logx-12log1-2x logy=ax+logsecx+loglogx-12log1-2x
Differentiating with respect to x using chain rule,
1ydydx=ddxax+ddxlog secx+ddxlog logx-12log1-2x1ydydx=a+1secxddxsecx+1logxddxlogx-1211-2xddx1-2x1ydydx=a+secx tanxsecx+1logx1x-1211-2x-2dydx=ya+tanx+1x logx+11-2xdydx=eaxsecx logx1-2xa+tanx+1x logx+11-2x Using equation i

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon