wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find dydx

y=x2-13 2x-1x-3 4x-1

Open in App
Solution

We have, y=x2-132x-1x-34x-1 ...iy=x2-132x-1x-3124x-112
Taking log on both sides,
log y=logx2-132x-1x-3124x-112logy=logx2-13+log2x-1-logx-312-log4x-112logy=3 logx2-1+log2x-1-12logx-3-12log4x-1
Differentiating with respect to x using chain rule,
1ydydx=3ddxlogx2-1+ddxlog2x-1-12ddxlogx-3-12log4x-11ydydx=31x2-1ddxx2-1+12x-1ddx2x-1-121x-3ddxx-3-1214x-1ddx4x-11ydydx=31x2-12x+12x-12-121x-31-1214x-141ydydx=6xx2-1+22x-1-12x-3-24x-1dydx=y6xx2-1+22x-1-12x-3-24x-1dydx=x2-132x-1x-34x-16xx2-1+22x-1-12x-3-24x-1 using equation i

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon