wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find dydx

y=xsin x+sin xx

Open in App
Solution

Let y=xsinx+sinxxAlso, let u=xsinx and v=sinxx y=u+vdydx=dudx+dvdx ...iNow, u=xsinxTaking log on both sides,logu=logxsinxlogu=sinx logxDifferentiating both sides with respect to x,1ududx=logxddxsinx +sinxddxlogx dudx=ucosx logx+sinx1xdudx=xsinxcosx logx+sinxx ...iiAgain, v=sinxxTaking log on both sides,logv=logsinxxlogv=x logsinxDifferentiating both sides with respect to x,1vdvdx=logsinxddxx+xddxlogsinxdvdx=vlogsinx+x1sinxddxsinxdvdx=sinxxlog sinx+xsinxcosxdvdx=sinxxlog sinx+x cotx ..iiiFrom i,iiand iii, we obtaindydx=xsinxcosx logx+sinxx+sinxxlog sinx+x cotx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Implicit Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon