As, x is in quadrant III,
π<x< 3π 2 π 2 < x 2 < 3π 4
Therefore, cos x 2 and tan x 2 are negative, whereas sin x 2 is positive.
It is given that,
cosx=− 1 3
Here,
cosx=1−2 sin 2 x 2 sin 2 x 2 = 1−cosx 2 = 1−( − 1 3 ) 2 = 2 3
Therefore,
sin x 2 = 2 3 ( sin x 2 is positive ) sin x 2 = 6 3
Now,
cosx=2 cos 2 x 2 −1 cos 2 x 2 = 1+cosx 2 = 1+( − 1 3 ) 2 = 1 3
Now, for cos x 2
cos x 2 =− 1 3
For tan x 2 ,
tan x 2 = sin x 2 cos x 2 = 2 3 − 1 3 =− 2
Simplify the above equation,
tan x 2 =− 2
Hence, the respective values of sin x 2 , cos x 2 and tan x 2 are 6 3 , − 3 3 and − 2 .