Find dydx, if x and y are connected parametrically by the equations given in questions without eliminating the parameter.
x=a(cos θ+θsin θ),y=a (sin θ−θ cos θ)
Given, x=a(cos θ+θsin θ),y=a (sin θ−θ cos θ)
Differentiating w.r.t. θ, we get
∴ dxdθ=addθ(cos θ+θ sin θ)=a{ddθ(cos θ)+ddθ(θ sin θ)} =a{−sin θ+(θcos θ+sin θ.1)}=a θ cos θ (Using product rule in ddθ(θ sin θ))and dydθ=a ddθ(sin θ−θcos θ)=a{ddθ(sin θ)−ddθ(θcos θ)} =a[cos θ−{θ(−sin θ)+cos θ.1}]=aθ sin θ (Using product rule in ddθ(θcos θ))⇒ dydx=dydθdxdθ=aθ sin θaθ cos θ=tan θ