wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

Find dydx, if x and y are connected parametrically by the equations given in questions without eliminating the parameter.

x=a(cos θ+θsin θ),y=a (sin θθ cos θ)

Open in App
Solution

Given, x=a(cos θ+θsin θ),y=a (sin θθ cos θ)

Differentiating w.r.t. θ, we get

dxdθ=addθ(cos θ+θ sin θ)=a{ddθ(cos θ)+ddθ(θ sin θ)} =a{sin θ+(θcos θ+sin θ.1)}=a θ cos θ (Using product rule in ddθ(θ sin θ))and dydθ=a ddθ(sin θθcos θ)=a{ddθ(sin θ)ddθ(θcos θ)} =a[cos θ{θ(sin θ)+cos θ.1}]=aθ sin θ (Using product rule in ddθ(θcos θ)) dydx=dydθdxdθ=aθ sin θaθ cos θ=tan θ


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon